

Critical Thermal Maximum of Stream Fishes from the Arbuckle Mountains Ecoregion

Nicole Farless & Shannon Brewer

¹Department of Natural Resources Ecology and Management, Oklahoma State University

²U.S. Geological Survey, Oklahoma Cooperative Fish and Wildlife Research Unit, Oklahoma State University

Problem

- Streams are altered via:
 - Damming
 - Groundwater pumping
 - Riparian removal
 - Converting landscape to urban and agriculture
- Reduction in biodiversity and abundance of stream fish

Influences of Stream Temperature on Fishes

- Metabolic processes
- Geographic distribution
- Reproduction
- Survival

Photo by Brandon Brown

Factors Influencing Temperature

Figure by Bartholow 1999

Increased Temperature

- Stream temperature expected to increase
 - $2 3 \, ^{\circ}C$
 - Climate change
 - Flow alteration
 - Increased groundwater pumping
 - Reduction in riparian zone

Temperature Tolerance of Fishes

 Stream temperature could increase past thermal tolerance of many stream fishes

Importance of Groundwater Inputs

- Non spring-fed streams are more susceptible to increases in stream temperature
- Groundwater inputs provide a temperature buffer to spring-fed streams
 - Groundwater pumping
 makes spring-fed streams
 more susceptible to
 increases in temperature

Objective

 Determine the Critical Thermal Maximum of stream fishes from the Arbuckle Mountains

Ecoregion

Study Area

Figure by ridenbaugh.com

Critical Thermal Maximum (CTM)

- Developed by Cowles and Bogert in 1944
- CTM- Increase temperature at a constant rate, fast enough to prevent acclimation until fishes

reaches critical endpoint

Photo by Brandon Brown

Photo by tucsonherpsociety

Critical Thermal Maximum Endpoints

- 1. Loss of equilibrium
- 2. Muscular spasms
- 3. Death

CTM of 15 Species

Arbuckle Mountain Species

- 1. Logperch
- 2. Orangethroat Darter
- 3. Juvenile Golden Redhorse
- 4. Bigeye Shiner
- 5. Central Stoneroller
- 6. Brook Silverside
- 7. Striped Shiner
- 8. Blacktail Minnow
- 9. Juvenile Bluegill
- 10. Bluntnose Minnow
- 11. Silverband Shiner

ODWC Species of Greatest Concern

12. Orangebelly Darter

Spring-Fed Obligates

13. Southern Redbelly Dace

ODWC Species of Greatest Concern and Spring-Fed Obligate

- 14. Least Darter
- 15. Redspot Chub

Fish Sampling

Critical Thermal Maximum

- Acclimate 2 4 weeks at 20°C
- Transfer to experimental tank
 - Acclimate 24 h at 20°C
- Increase temperature2° C per h until:
 - 1. Loss of equilibrium
 - 2. Muscular spasms
 - 3. Death

Experimental Design

Loss of Equilibrium Results

ODWC Species of Greatest Concern

Spring-Fed Obligates

Discussion

- Temperature range of loss of equilibrium CTM is 34° C – 36° C
 - Maximum temperature of Blue River is 32° C
- Fish are living close to their thermal tolerances
 - Predicted increases in stream temperature will increase the thermal stress of fishes
- CTM rate of increase is much faster than streams typical rate of increase

Implications

 Help managers decide what species should be listed as species of greatest concern

 Determine sites that would be appropriate for reintroduction of fishes based on their

thermal tolerances

Future Studies

- Long-term temperature tolerance study that allows for acclimation and includes a diel fluctuation
 - Spring-fed v non spring-fed
- Model the temperature of Blue River using Stream Segment Temperature Model (SSTEMP)
- Predict how future increases in stream temperature will influence the fish assemblage

Acknowledgements

- The Nature Conservancy
- The Bruno Family
- Technicians: Josh Mouser, Jake Holiday,
 Dawson McNeil, Dakota McNeil, and Brandon Melton
- Oklahoma State University
- Oklahoma Cooperative Fish and Wildlife Service

